
1

Microprocessor Evolution: Past, Microprocessor Evolution: Past,
Present, and FuturePresent, and Future

Guri Sohi
University of Wisconsin

2

OutlineOutline

l The enabler: semiconductor technology
l Role of the processor architect
l Micro-architectures of the past 20 years
§ From pipelining to speculation

l Micro-architectures of the next 10 years

3

Semiconductor TechnologySemiconductor Technology

l Many more available transistors
l Imbalances due to disparate rates of

performance improvement
§ E.g., logic and memory speeds

How does this impact the architecture
of microprocessors?

4

Number of TransistorsNumber of Transistors

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

100,000,000,000

1971 1974 1982 1989 1997 2000 2004 2008 2012 2016

T
ra

n
si

st
o

rs

4004 8008

8080

80286

80386 80486

Pentium Pentium II

Pentium III Pentium 4

8086

5

Relative Memory SpeedRelative Memory Speed

1.4

2.5
3.8

6.3
10.7

29
48

75
120

1

10

100

1000

1974 1978 1982 1985 1989 1993 1997 1999 2000

P
ro

ce
ss

o
r,

 M
em

o
ry

 D
iv

id
e

(C
yc

le
 T

im
e)

6

Intel MicroprocessorsIntel Microprocessors

386 (275 K)
486 (1180 K)

Pentium (3100 K)
Pentium II (7500 K)

Pentium III (24000 K)Pentium 4 (42000 K)

What is being
done with all

the transistors?

2

7

Role of Computer ArchitectRole of Computer Architect

l Get desired level of performance
§ Single-thread “desktop” applications

l Determine functionality needed
l Determine how functionality should be

implemented

8

Role of Computer ArchitectRole of Computer Architect……

l Defining functionality
§ Functionality to deal with increasing latencies

(e.g., caches, wires)
§ Functionality to increase parallelism and its

exploitation

l Implementing functionality
§ Balancing various technology parameters
§ Ease of design / verification / testing

9

The Performance EquationThe Performance Equation

l Not much can be done about first term in hardware
§ But, …

l Logic speed increase - decreases 3 rd term
§ Watch out for possible increase in 2nd term

l Use micro-architectural innovations to decrease 2nd

and 3rd terms
§ Reduce latencies

§ Exploit parallelism

Time = Number of Instructions x Cycles per
Instruction x Clock Cycle Time

10

MicroarchitecturalMicroarchitectural FunctionalityFunctionality

l Functionality to cope with increasing memory
latencies

l Functionality to exploit parallelism

11

Memory HierarchiesMemory Hierarchies

l Reducing access latency and improving
access bandwidth

l Single-level caches
l Multi-level caches
l Non-blocking caches
l Multi-ported and multi-banked caches
l Trace caches

12

The March of ParallelismThe March of Parallelism

Generation 1 (1970s) Generation 2 (1980s)

Generation 3 (1990s)

Generation 4 (2000s)

3

13

Exploiting ParallelismExploiting Parallelism

• Little change in programming model
§ still write programs in sequential languages

l Automatic parallelization not widely
successful

l Great investment in existing software

Resort to low-level,
Instruction Level Parallelism (ILP)

14

Instruction Level Parallelism (ILP)Instruction Level Parallelism (ILP)

l Determine small number (e.g., < 100)
instructions to be executed

l Determine dependence relationships and
create dependence graph
§ Use to determine parallel execution

l Can be done statically (VLIW / EPIC) or
dynamically (out-of-order superscalar)

15

Limitations to ILPLimitations to ILP

l Branch instructions inhibit determination of
instructions to execute: control dependences

l Imperfect analysis of memory addresses inhibits
reordering of memory operations: ambiguous
memory dependences

l Program/algorithm data flow inhibits parallelism: true
dependences

l Increasing latencies exacerbate impact of
dependences

Use speculation to overcome impact of dependences

16

SpeculationSpeculation

Speculation: “.. to assume a business risk
in hope of gain’’

Webster

17

Speculation and Computer ArchitectureSpeculation and Computer Architecture

l Speculate outcome of event rather than
waiting for outcome to be known
§ Program behavior provides rationale for high

success rate
l Functionality to support speculation
l Functionality to speculate better
l Functionality to minimize mis-speculation

penalty

18

Control SpeculationControl Speculation

l Predict outcome of branch instructions
l Speculatively fetch and execute instructions

from predicted path
§ Increase available parallelism

l Recover if prediction is incorrect

4

19

Control Speculation ExampleControl Speculation Example

W r o n g

Speculative

Speculative

SQUASHED

C o n t i n u e
F e t c h

CFG Front- end
(Fetch)

Speculative

Speculative

Speculative

Speculative

P r e d i c t

P r e d i c t C o r r e c t

Back- end
(OoO Execute, Commit)

20

Model for Speculative ExecutionModel for Speculative Execution

Ins
tru

ctio
n

fet
ch

 & br
an

ch

pre
dic

tio
n Dep

en
de

nc
e

che
cki

ng
 an

d

dis
pa

tch
ing

Instruction
Issue & Execution

Static
program

Dynamic
instruction
stream

Execution
window

Completed
instructions

Instn
. re

ord
er

&

co
mmit

21

Supporting Control SpeculationSupporting Control Speculation

l Techniques to predict branch outcome: branch
predictors
§ Initiating speculation
§ Improving accuracy of speculation

l Techniques to support speculative execution:
reservation stations, register renaming etc.
§ Supporting speculative execution

l Techniques to give appearance of sequential
execution: reorder buffers, etc.
§ Doing it transparently

22

Key observationKey observation

Basic mechanisms to support control
speculation can support other forms of

speculation as well

23

PerformancePerformance--Inhibiting ConstraintsInhibiting Constraints
l Control dependences: inhibit creation of instruction

window
§ Use control speculation

l Ambiguous data dependences: inhibit parallelism
recognition
§ Use data dependence speculation

l True data dependences: inhibit parallelism
§ Use value speculation

l Common mechanisms may support different forms of
speculation

l Different techniques to improve accuracy of
speculation

24

Speculation in Use TodaySpeculation in Use Today

l Address calculation and translation
(especially if 2-step process)

l Cache hit
l Memory ordering violation in multiprocessors
l Load/store dependences
l Many others on the design board

5

25

MultithreadingMultithreading

l Microprocessor can execute multiple
operations at a time
§ 4 or 6 operations per cycle

l Hard to achieve this level of parallelism from
single program

l Can we run multiple programs (threads) on
(single) processor without much effort?
§ Simultaneous multithreading (SMT) or

Hyperthreading

26

SMT OverviewSMT Overview

Unused Slot Thread 1 Thread 2

Thread 3 Thread 4

Superscalar Fine-grained MT SMT

E
xe

cu
tio

n
C

yc
le

s

Shared
Processor
Execution
Resources

AS1 AS2 AS3 AS4

Many “logical” processors
(AS – architected state)

One “physical” processor

27

MultithreadingMultithreading

l Today many high-end microprocessors are
multithreaded (e.g., Intel Pentium 4)

l Support for 2-4 threads but expect to get only
1.3X improvement in throughput

28

Microprocessors Microprocessors –– the next 10 yearsthe next 10 years

l Factor of 30 increase in semiconductor resources
§ How to use it?

l New constraints
§ Power consumption
§ Wire delays
§ Design / verification complexity

l New applications?
§ Throughput-oriented workloads

§ Coarse-grain multithreaded applications

29

Technology TrendsTechnology Trends

l Design and verification of large number of
transistors becoming unwieldy

l Wires getting relatively slower
§ Short wires for fast clock
§ Implies increase latencies; exploit locality of

communication
l Power issues becoming very important

30

ArchitectArchitect’’s Role Revisiteds Role Revisited

l Defining functionality
§ New models needed to further increase

parallelism exploitation
l Implementing functionality
§ Becoming a dominating factor?

l Speculation is likely to be the key to
overcoming constraints

6

31

Implications of TrendsImplications of Trends

l Implementation considerations will imply computing
chips with multiple (replicated?) processing cores
§ “multiprocessor” or “multiprocessor-like” or

“multithreaded”
§ Will start out as “logical” replication (e.g., SMT)

§ Will move towards “physical” replication (e.g., CMP)

l How to assign work to multiple processing cores?
§ Independent programs (or threads)
§ Parts of a single program

32

CMP OverviewCMP Overview

l Several processor cores in one die

l Shared L2 caches

l Chip Communication to build multi-
chip module with many CMPs +
memory

Core 1

L2 Cache

Chip
Communication

Core 0

33

ThroughputThroughput--Oriented ProcessingOriented Processing

l Executing multiple, independent programs on
underlying parallel micro-architecture
§ Similar to traditional throughput-oriented

multiprocessor
§ Significant engineering challenges, but little in

ways of architectural / micro-architectural
innovation

Can we use underlying “multiprocessor” to
speed up execution of single program?

34

Parallel Processing of Single ProgramParallel Processing of Single Program

l Will the promise of explicit / automatic
parallelism come true?

l Will new (parallel) programming languages
take over the world?

35

Parallel Processing of Single ProgramParallel Processing of Single Program

l Multiple processors in chip will encourage
writing of parallel programs

l Reduced (on-chip) latencies may make
parallel processing fruitful

36

Speculative ParallelizationSpeculative Parallelization

l Sequential languages aren’t going away
l Use speculation to overcome inhibitors to

“automatic” parallelization
§ Ambiguous dependences

l Divide program into “speculatively parallel”
portions or “speculative threads”

7

37

Speculative ThreadsSpeculative Threads

l Subject of extensive research today
§ Different speculative parallelization models

being investigated

38

Generic circa 2010 MicroprocessorGeneric circa 2010 Microprocessor

l 4 – 8 general-purpose processing engines on chip
§ Used to execute independent programs
§ Explicitly parallel programs (when possible)
§ Speculatively parallel threads
§ Helper threads

l Special-purpose processing units (e.g., DSP
functionality)

l Elaborate memory hierarchy
l Elaborate inter-chip communication facilities
l Extensive use of different forms of speculation

39

SummarySummary

l Semiconductor technology has, and will continue to,
give computer architects new opportunities

l Architects have used speculation techniques to
overcome performance barriers; will likely continue
to do so

l Future microprocessors are going to have capability
to execute multiple threads of code

l New models of speculation (e.g., thread-level
speculation) will be needed to extract more
parallelism

