Outline

The enabler: semiconductor technology

Mi Croprocessor Evolution: PaSt, Role of the processor architect
Present and Future Micro-architectures of the past 20 years

= From pipelining to speculation
Micro-architectures of the next 10 years
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Semiconductor Technology Number of Transistors

e Many more available transistors 100,000,000,000

e Imbalances due to disparate rates of 10,000,000,000
performance improvement

= E.g.,logic and memory speeds
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Role of Computer Architect Role of Computer Architect...

e Get desired level of performance e Defining functionality

= Single-thread “ desktop” applications = Functionality to deal with increasing latencies
e Determine functionality needed (e.g., caches, wires)
e Determine how functionality should be = Functionality to increase parallelism and its

implemented epr0|tat|.on . .
e Implementing functionality

= Balancing various technology parameters
= Ease of design / verification / testing
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BaaPerformance Equation Microarchitectural Functionality

e Functionality to cope with increasing memory
latencies

o Not much carn T e Functionality to exploit parallelism

= But, ...
e Logic speed increase - decreases 3"d term
= Watch out for possible increase in 2" term
e Use micro-architectural innovations to decrease 2nd
and 39 terms
= Reduce latencies
[wl = Exploit parallelism

Memory Hierarchies The March of Parallelism

e Reducing access latency and improving T NACS) Generation 2 (1980s)

access bandwidth ] =) EEEEE

e Single-level caches
e Multi-level caches l
O Non-blocking caches Generation 4 (2000s)
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e Multi-ported and multi-banked caches HEEEE Generation 3 (1990s)
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Exploiting Parallelism Instruction Level Parallelism (ILP)

® Little change in programming model e Determine small number (e.g., < 100)
= still write programs in sequential languages instructions to be executed
e Automatic parallelization not widely e Determine dependence relationships and
successful create dependence graph
e Great investment in existing software = Use to determine parallel execution
e Can be done statically (VLIW / EPIC) or
dynamically (out-of-order superscalar)

Resort to low-level, =~
ction Level Parallelism (i
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Limitationsto ILP Sp—lation

e Branch instructions inhibit determination of
instructions to execute: control dependences
Imperfect analysis of memory addresses inhibits
reordering of memory operations: ambiguous eculation: .. to-assume a busine

memory dependences

Program/algorithm data flow inhibits parallelism: true
dependences

in hope of gain”

e Increasing latencies exacerbate impact of

r-“] e speculation to overcome impact of dependences I

Speculation and Computer Architecture Control Speculation

e Speculate outcome of event rather than e Predict outcome of branch instructions
waiting for outcome to be known e Speculatively fetch and execute instructions

= Program behavior provides rationale for high from predicted path
success rate = Increase available parallelism

e Functionality to e Recover if prediction is incorrect
e Functionality to
e Functionality to




Control Speculation Example

Back-end
(000 Execute, Commit)

Speculative

Coeculative

SQUASHED

Front-end =
(Fetch) Speculative

Supporting Control Speculation

Techniques to predict branch outcome: branch
predictors

= Initiating speculation

= Improving accuracy of speculation
Techniques to support speculative execution:
reservation stations, register renaming etc.

= Supporting speculative execution
Techniques to give appearance of sequential
execution: reorder buffers, etc.

= Doing it transparently
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Performance-1nhibiting Constraints

Control dependences: inhibit creation of instruction
window

= Use control speculation
Ambiguous data dependences: inhibit parallelism
recognition

= Use data dependence speculation

True data dependences: inhibit parallelism

= Use value speculation

Common mechanisms may support different forms of
speculation

Different techniques to improve accuracy of

mspeculation

Model for Speculative Execution
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Speculation in Use Today

e Address calculation and translation
(especially if 2-step process)

Cache hit

Memory ordering violation in multiprocessors
Load/store dependences

Many others on the design board




Multithreading

e Microprocessor can execute multiple
operations at atime
= 4 or 6 operations per cycle

e Hard to achieve this level of parallelism from
single program

e Can we run multiple programs (threads) on
(single) processor without much effort?

= Simultaneous multithreading (SMT) or
Hyperthreading
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Multithreading

Today many high-end microprocessors are
multithreaded (e.g., Intel Pentium 4)

Support for 2-4 threads but expect to get only
1.3X improvement in throughput

Technology Trends

e Design and verification of large number of
transistors becoming unwieldy

e Wires getting relatively slower
= Short wires for fast clock

= Implies increase latencies; exploit locality of
communication

e Power issues becoming very important

SMT Overview
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Many “logical” processors Superscalar Fine-grained MT SMT
(AS —architected state)

Execution Cycles
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One “physical” processor
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Microprocessors— the next 10 years

e Factor of 30 increase in semiconductor resources
* How to use it?

Power consumption
Wire delays
Design / verification complexity

Throughput-oriented workloads
Coarse-grain multithreaded applications

Architect’ s Role Revisited

e Defining functionality

= New models needed to further increase
parallelism exploitation

e Implementing functionality
= Becoming a dominating factor?

e Speculation is likely to be the key to
overcoming constraints




Implications of Trends

e Implementation considerations will imply computing
chips with multiple (replicated?) processing cores
= “multiprocessor” or “multiprocessor-like” or
“multithreaded”
= Will start out as “logical” replication (e.g., SMT)
= Will move towards “physical” replication (e.g., CMP)
e How to assign work to multiple processing cores?
= Independent programs (or threads)
= Parts of a single program
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Throughput-Oriented Processing

e Executing multiple, independent programs on
underlying parallel micro-architecture
= Similar to traditional throughput-oriented
multiprocessor
= Significant engineering challenges, but little in
ave of architectural / micro-architectural

Parallel Processing of Single Program

e Multiple processors in chip will encourage
writing of parallel programs

e Reduced (on-chip) latencies may make
parallel processing fruitful

CMP Overview

Several processor cores in one die
Shared L2 caches
L2 Cache X . . .
Chip Communication to build multi-
ip chip module with many CMPs +
Communication memory

)
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Parallel Processing of Single Program

e Will the promise of explicit / automatic
parallelism come true?

e Will new (parallel) programming languages
take over the world?

Speculative Parallelization

e Sequential languages aren’t going away

e Use speculation to overcome inhibitors to
“automatic” parallelization

= Ambiguous dependences

e Divide program into “speculatively parallel”
portions or “speculative threads”




Speculative Threads Generic circa 2010 Microproces

e Subject of extensive research today e 4 -8 general-purpose processing engines on chip
= Used to execute independent programs
= Explicitly parallel programs (when possible)
= Speculatively parallel threads
= Helper threads
Special-purpose processing units (e.g., DSP
functionality)
Elaborate memory hierarchy
Elaborate inter-chip communication facilities
Extensive use of different forms of speculation

= Different speculative parallelization models
being investigated

Summary

Semiconductor technology has, and will continue to,
give computer architects new opportunities

Architects have used speculation techniques to
overcome performance barriers; will likely continue
to do so

Future microprocessors are going to have capability
to execute multiple threads of code

New models of speculation (e.g., thread-level
speculation) will be needed to extract more
parallelism




