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OutlineOutline

l The enabler: semiconductor technology
l Role of the processor architect
l Micro-architectures of the past 20 years
§ From pipelining to speculation

l Micro-architectures of the next 10 years
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Semiconductor TechnologySemiconductor Technology

l Many more available transistors
l Imbalances due to disparate rates of 

performance improvement
§ E.g., logic and memory speeds

How does this impact the architecture 
of microprocessors?
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Relative Memory SpeedRelative Memory Speed
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Intel MicroprocessorsIntel Microprocessors
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What is being 
done with all 

the transistors?
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Role of Computer ArchitectRole of Computer Architect

l Get desired level of performance
§ Single-thread “desktop” applications

l Determine functionality needed
l Determine how functionality should be 

implemented
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Role of Computer ArchitectRole of Computer Architect……

l Defining functionality
§ Functionality to deal with increasing latencies 

(e.g., caches, wires)
§ Functionality to increase parallelism and its 

exploitation

l Implementing functionality
§ Balancing various technology parameters
§ Ease of design / verification / testing
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The Performance EquationThe Performance Equation

l Not much can be done about first term in hardware
§ But, …

l Logic speed increase - decreases 3 rd term
§ Watch out for possible increase in 2nd term

l Use micro-architectural innovations to decrease 2nd

and 3rd terms
§ Reduce latencies

§ Exploit parallelism

Time = Number of Instructions x Cycles per   
Instruction x Clock Cycle Time
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MicroarchitecturalMicroarchitectural FunctionalityFunctionality

l Functionality to cope with increasing memory 
latencies

l Functionality to exploit parallelism
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Memory HierarchiesMemory Hierarchies

l Reducing access latency and improving 
access bandwidth

l Single-level caches
l Multi-level caches
l Non-blocking caches
l Multi-ported and multi-banked caches
l Trace caches
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The March of ParallelismThe March of Parallelism

Generation 1 (1970s) Generation 2 (1980s)

Generation 3 (1990s)

Generation 4 (2000s)
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Exploiting ParallelismExploiting Parallelism

• Little change in programming model
§ still write programs in sequential languages

l Automatic parallelization not widely 
successful

l Great investment in existing software

Resort to low-level, 
Instruction Level Parallelism (ILP)
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Instruction Level Parallelism (ILP)Instruction Level Parallelism (ILP)

l Determine small number (e.g., < 100) 
instructions to be executed

l Determine dependence relationships and 
create dependence graph
§ Use to determine parallel execution

l Can be done statically (VLIW / EPIC) or 
dynamically (out-of-order superscalar)
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Limitations to ILPLimitations to ILP

l Branch instructions inhibit determination of 
instructions to execute: control dependences

l Imperfect analysis of memory addresses inhibits 
reordering of memory operations: ambiguous 
memory dependences

l Program/algorithm data flow inhibits parallelism: true 
dependences

l Increasing latencies exacerbate impact of 
dependences

Use speculation to overcome impact of dependences
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SpeculationSpeculation

Speculation: “.. to assume a business risk 
in hope of gain’’

Webster
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Speculation and Computer ArchitectureSpeculation and Computer Architecture

l Speculate outcome of event rather than 
waiting for outcome to be known
§ Program behavior provides rationale for high 

success rate
l Functionality to support speculation
l Functionality to speculate better
l Functionality to minimize mis-speculation 

penalty
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Control SpeculationControl Speculation

l Predict outcome of branch instructions
l Speculatively fetch and execute instructions 

from predicted path
§ Increase available parallelism

l Recover if prediction is incorrect
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Control Speculation ExampleControl Speculation Example
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Model for Speculative ExecutionModel for Speculative Execution
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Supporting Control SpeculationSupporting Control Speculation

l Techniques to predict branch outcome: branch 
predictors
§ Initiating speculation
§ Improving accuracy of speculation

l Techniques to support speculative execution: 
reservation stations, register renaming etc.
§ Supporting speculative execution

l Techniques to give appearance of sequential 
execution: reorder buffers, etc.
§ Doing it transparently
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Key observationKey observation

Basic mechanisms to support control 
speculation can support other forms of 

speculation as well
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PerformancePerformance--Inhibiting ConstraintsInhibiting Constraints
l Control dependences: inhibit creation of instruction 

window
§ Use control speculation

l Ambiguous data dependences: inhibit parallelism 
recognition
§ Use data dependence speculation

l True data dependences: inhibit parallelism
§ Use value speculation

l Common mechanisms may support different forms of 
speculation

l Different techniques to improve accuracy of 
speculation
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Speculation in Use TodaySpeculation in Use Today

l Address calculation and translation 
(especially if 2-step process)

l Cache hit
l Memory ordering violation in multiprocessors
l Load/store dependences
l Many others on the design board
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MultithreadingMultithreading

l Microprocessor can  execute multiple 
operations at a time
§ 4 or 6 operations per cycle

l Hard to achieve this level of parallelism from 
single program

l Can we run multiple programs (threads) on 
(single) processor without much effort?
§ Simultaneous multithreading (SMT) or 

Hyperthreading
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SMT OverviewSMT Overview
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MultithreadingMultithreading

l Today many high-end microprocessors are 
multithreaded (e.g., Intel Pentium 4)

l Support for 2-4 threads but expect to get only 
1.3X improvement in throughput
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Microprocessors Microprocessors –– the next 10 yearsthe next 10 years

l Factor of 30 increase in semiconductor resources
§ How to use it?

l New constraints
§ Power consumption
§ Wire delays
§ Design / verification complexity

l New applications?
§ Throughput-oriented workloads

§ Coarse-grain multithreaded applications
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Technology TrendsTechnology Trends

l Design  and verification of large number of 
transistors becoming unwieldy

l Wires getting relatively slower
§ Short wires for fast clock
§ Implies increase latencies; exploit locality of 

communication
l Power issues becoming very important
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ArchitectArchitect’’s Role Revisiteds Role Revisited

l Defining functionality
§ New models needed to further increase 

parallelism exploitation
l Implementing functionality
§ Becoming a dominating factor?

l Speculation is likely to be the key to 
overcoming constraints
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Implications of TrendsImplications of Trends

l Implementation considerations will imply computing 
chips with multiple (replicated?) processing cores
§ “multiprocessor” or “multiprocessor-like” or 

“multithreaded”
§ Will start out as “logical” replication (e.g., SMT)

§ Will move towards “physical” replication (e.g., CMP)

l How to assign work to multiple processing cores?
§ Independent programs (or threads)
§ Parts of a single program 
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CMP OverviewCMP Overview

l Several processor cores in one die

l Shared L2 caches

l Chip Communication to build multi-
chip module with many CMPs + 
memory

Core 1

L2 Cache

Chip 
Communication

Core 0
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ThroughputThroughput--Oriented ProcessingOriented Processing

l Executing multiple, independent programs on 
underlying parallel micro-architecture
§ Similar to traditional throughput-oriented 

multiprocessor
§ Significant engineering challenges, but little in 

ways of architectural / micro-architectural 
innovation

Can we use underlying “multiprocessor” to 
speed up execution of single program?
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Parallel Processing of Single ProgramParallel Processing of Single Program

l Will the promise of explicit / automatic 
parallelism come true?

l Will new (parallel) programming languages 
take over the world?

35

Parallel Processing of Single ProgramParallel Processing of Single Program

l Multiple processors in chip will encourage 
writing of parallel programs

l Reduced (on-chip) latencies may make 
parallel processing fruitful
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Speculative ParallelizationSpeculative Parallelization

l Sequential languages aren’t going away
l Use speculation to overcome inhibitors to 

“automatic” parallelization
§ Ambiguous dependences

l Divide program into “speculatively parallel”
portions or “speculative threads”
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Speculative ThreadsSpeculative Threads

l Subject of extensive research today
§ Different speculative parallelization models 

being investigated

38

Generic circa 2010 MicroprocessorGeneric circa 2010 Microprocessor

l 4 – 8 general-purpose processing engines on chip
§ Used to execute independent programs
§ Explicitly parallel programs (when possible)
§ Speculatively parallel threads
§ Helper threads

l Special-purpose processing units (e.g., DSP 
functionality)

l Elaborate memory hierarchy
l Elaborate inter-chip communication facilities
l Extensive use of different forms of speculation
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SummarySummary

l Semiconductor technology has, and will continue to, 
give computer architects new opportunities

l Architects have used speculation techniques to 
overcome performance barriers; will likely continue 
to do so

l Future microprocessors are going to have capability 
to execute multiple threads of code

l New models of speculation (e.g., thread-level 
speculation) will be needed to extract more 
parallelism


