工学部

論理回路基礎 (第6回)

坂井 修一

東京大学大学院 情報理工学系研究科 電子情報学専攻東京大学 工学部電気工学科

- 講義の概要と予定
- フリップフロップ(1)

論理回路基礎

東大·坂井

5.フリップフロップ(Flip Flop, FF)

- フリップフロップ = 1 bitの状態をもつ回路
- フリップフロップの分類
 - 非同期型(ラッチ、latch) 入力が与えられるとただちに出力が変化する
 - SRラッチ(非同期SRフリップフロップ)
 - Dラッチ(非同期Dフリップフロップ)
 - 同期型(狭義のフリップフロップ)

クロック(矩形波)が生じた時点の入力にだけ出力が影響を受ける

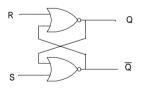
- SRフリップフロップ
- Dフリップフロップ
- JKフリップフロップ
- ⊺フリップフロップ

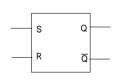
論理回路基礎

東大·坂井

講義の概要と予定

- 1.ディジタル回路入門
- 2 . 論理演算
- 3.組み合わせ回路の構成法
- 4.組合せ回路の実例
- 5.フリップフロップ
- 6.基本的な順序回路
- 7.一般的な順序回路
- 8. 論理回路の実現
- 9.記憶回路
- 10. ディジタル回路から電子計算機へ

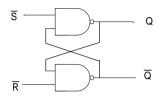

休講:12月2日 試験: 3月3日(予定)


論理回路基礎

東大·坂井

5.1 S R ラッチ (非同期 S R フリップフロップ)

SR: Set - Reset


S	R	Next Q	Next Q	意味
0	0	Q	Q	前の状態
0	1	0	1	リセット
1	0	1	0	セット
1	1	0	0	禁止入力

左のような表を 特性表という

論理回路基礎

東大·坂井

NANDゲートによる S R ラッチ

問題

- 1.上の回路の状態遷移表を書け
- 2.NORゲートによる状態遷移表と差があるか?

今後、NANDゲートによるSRラッチを基本回路と考える

論理回路基礎

東大·坂井

回答

S	R	Next Q	Next Q	意味
0	0	Q	Q	前の状態
0	1	0	1	リセット
1	0	1	0	セット
1	1	1	1	禁止入力

禁止入力に対する出力が違う

実用的な意味はない

論理回路基礎

論理回路基礎

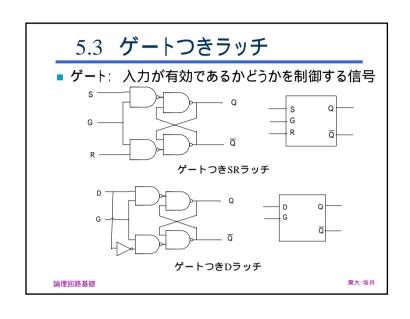
東大·坂井

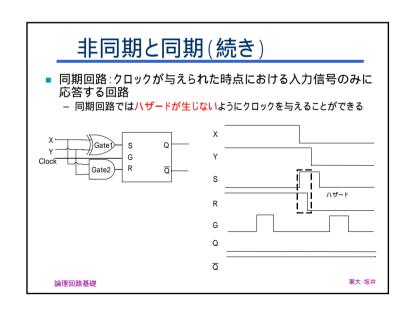
東大·坂井

特性表と励起表

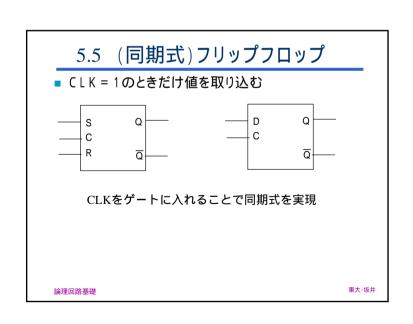
SRラッチの動作

(a) 特性表				
S	R	Qnext		
0	0	Q		
0	1	0		
1	0	1		
1	1	禁止入力		


(b)励起表					
Q	Qnext	S	R		
0	0	0	X		
0	1	1	0		
1	0	0	1		
1	1	X	0		
xは、0でも1でもよい					


「入力と状態に対する次状態」を表す 「求める状態変化に対する入力」を表す

論理回路基礎


東大·坂井

5.4 非同期と同期 *** 非同期回路: 入力が与えられるとただちに出力が変化する回路 非同期の問題点: ハザード(Hazard) 2つの入力SとRに時間的接差があるとき、一時的に期待していない値が現れる現象 X Y Gate2 R Q 動作不定 動作不定 論理回路基礎 東大坂井

