Linux D7\ 5 A
~INTDI4—IILRAENLGI—FRERDEHRFE T~

BERZKRF AHE=

sslab
, system software

=t]y A sslab

AEFEZ (BESE2AFEIFAFRIFR)
= RKBIF, BEERNGEEZRTHRE

=1 o B 3
s ARL—TFT AT ORTLELV VAT LY DT
FARVAETI)L-avEa—T4o5 125D LER

|I,

_fd~ H 7__ ~
« R ETDICH
GPGPU M {x%E1k
Live Migration @ 1£8EZE/
VM R a—)o 5 E
<8, BFELLET
s RERBAER)D=HD 0S XiE
BENHo=oHEELLIL

ANBDFERE

sslab
system software

s VIR IT7DEREEIIHESDOEFEE
s TARTOBEINIGIRLB LT D

s Operating System (OS) D TA4RXVFEYT41E?
s OS [TTARTHOYILITT7TDERE

= OS DEFIEVITAHIVEE

== (ZE

s OS ODRFTH, LINuX > TTARUATIL?

= Linux DEEE-T?

RedHat [C&&H o T- 20 HHBDEFLR—bE0

= Linux D/\5G->T?

O—F&Z&EA® Linux git log (A—F{BIEERER) =047

ANBDFERE

s Linux > TN AL LVD T TIEAELY- - -
s TH LINUX > THEDAUITIITED>TET

s Linux M/\TZERERLELS
« OS EAMOM#ZEEMNLI-O—FRE
OS [THEPGIE/INT - INF— % FRRIICHRH T 5
— XILIRAVANESHDBEEEN
— unlock %> free LEDEULHLEN
~- BEROHNERBEENTLD

s Linux [Z[&

» T7AYILTIENFRVEHOHTIAVI T 5B BETFUHT

ED/INTH-T?

s CNETIL Linux FARE DEEREENHAFELY
Linux [Z[& “co0” ELNS/NT AYZ LN
ZM “00” DTN TEEATI—FBESZEEYELT:

sslab

tem software

ABDERE 7 sslab

» I FREFORREIHHRBEDOBAR
= TOORBREGHEY

s RERERZREOHEWNVIO—FEER

s RGN JIEERZETH
JYIRYT 7 IRIZBITAEYS T—4

s 37 FHE#ZZ 5 Linux DaO—K{EBIEEREFEE D
HAREEZEWNWIE(ZLB/\TJ—TLA
Amazon EC2. 100 1> AR AT 1 4 A.

s Linux [TERBVEGZE/8T -\ 32— D H

s EHAHABEEDINT - IN2—2[ZDNVNTCO—FRRESRZEZER

s EHD Linux [Z2BEWTHEERD/NNTEHKR

Availability of Computer Systems _sslab

= An important requirement for all ranges of

computer systems

= High-end enterprise systems
High-end enterprise systems lose millions of dollars if their

services are unavailable

= Low-end consumer devices

Low-end device vendors would lose their customers if their
products were not very stable or sometimes got hung up

e.g.) Apple was criticized for performance degradation
caused by updating iPhone OS 3.x to iOS 4.0.

Svlay - PUTAAIILTIELEWLWS—EXTY,

24Hr x 7 days O,

IEMNRHLNTLNS

Basic Definitions Zsslab

s Steady-state availability (Ass) or just availability

= Long-term probability that the system is available when
requested:

Ass =MTTF/(MTTF + MTTR)

= MTTF is the system mean time to failure, a complex
combination of component MTTFs

= MTTR is the system mean time to recovery

Basic Definitions Zsslab

= Downtime in minutes per year

= In industry, (un)availability is usually represented in
terms of annual downtime

= Downtime = 365 x 24 x 60 x (1 — AsS) minutes

= In industry it is common to define the availability in
terms of number of nines

5 NINES (Ass = 0.99999) — 5.26 minutes annual downtime
4 NINES (Ass =0.9999) — 52.56 minutes annual downtime

Number of Nines — Reality Check ,.sslab

s 49% of Fortune 500 companies experience at
least 1.6 hours of downtime per week

= Approx. 80 hours/year=4800 minutes/year
= Ass = (8760 - 80) / 8760=0.9908

s Thatis, between 2 NINES and 3 NINES

= [his study assumes planned and unplanned
downtime, together

Kernel Failures A sslab

= Have a considerable impact on the overall
availability of software systems

= If a kernel fails, all the applications running on it also fail
Even if the applications are highly reliable

= Commodity OS kernels are far from bug-free

= There are critical bugs inside kernel core components
that lead to system crashes

Linux _~sslab

s Linux is “infrastructure” of modern IT society

= From embedded systems to supercomputers

Linux is employed in Digital TVs, digital recorders, digital
cameras employ Linux

Android is a variant of Linux
Many servers rely on Linux

= Yet, Linux is far from bug-free
= Linux is more reliable than application software

= Linux failures are more fatal than application failures

Even if applications are highly reliable, no applications can
continue to run on failed Linux

EARHEF

B sslab
system software

ol
0

Fault, Error, Failure XL TN &H5F=HANESERKR
s [TARVET)L] QDR TIEESE

Fault:
« JOJSLHNORY WNT)DIE
s INTDBBHAEIFIIESEFEELLGL
Error:
» JATSLORAERENAGFELILESIDLDITHEOTLNSHF
s INTEBEAET=OHI2EMLITIREEIZAZ->TULNS
A bug is activated

Failure:
= IZ—RENNBNBEE TS HREISTY,
EENFKELTLVS

s VRATLDISY A, N\, HEEIR TR ELE

Outline of the Talk _~sslab

s Software is the problem

= Basic terminology

= Reality in computer software systems
s Linux failures

= Is Linux really reliable?

= Failures in the wild

= Linux faults
= Why does Linux fail?

= Making Linux more reliable
= Code-checking Linux

Outline of the Talk 7 sslab

s Linux failures

= Is Linux really reliable?
= Failures in the wild

To understand Linux failures... _~sslab

m Collected Linux oopses from RedHat repository

= Linux crash reports are called “oops”
Special thanks to Anton Arapov for granting us the access

= Oopses are submitted automatically or manually to the
repository

s 187,342 oopses from Sept 2012 to April 2013

= RedHat repository has been revived since Sept 2012
= Repository was down for years due to HW limitation

s Collected oopses are real ones
= Expected to reflect Linux failures in the wild

Linux Oops in a Nutshell _Zsslab

= Linux crash reports
= Describes why the kernel fails

= Contains some information for diagnosis
register values, call trace, code location where a failure occurs

s Oops is generated by

= Critical failure
NULL pointer dereference, division by zero, etc. in the kernel

= BUG() macro

Similar to C assert() macro
Condition given to BUG() holds, the kernel is crashed intentionally

= WARN() macro
Similar to BUG() macro, but does not make the kernel crashed

= Ad hoc printk()
printk() is similar to printf() in C. Arbitrary message can be logged

BUG: unable to handle kernel NULL pointer dereference at (null) —_—

IP: [<cl10alcal>] anon_vma_link+0x24/0x2b *pde = 00000000 ﬁcause of oops}

Oops: 0002 [#3] SMP

last sysfs file: /sys/devices/LNXSYSTM: 00/LNXSYBUS:00
00/power_supply/BAT1/charge_full

Modules linked in: rndis_wlan rndis_host cdc_ether...

[last unloaded: scsi_wait_scan]

Pid: 2452, comm: gnome-panel Tainted: G D (2.6.32-5-686 #1) Aspire 5920

EIP: 0060: [<cl10alcal>] EFLAGS: 00010246 CPU: 0

EIP is at anon_vma_link+0x24/0x2b

EAX: £6£84404 EBX: £f6£84400 ECX: eb4aa5b4 EDX: 00000000

ESI: eb4aab80 EDI: eb4aabd8 EBP: ef76a5d8 ESP: f61c3eb8

DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068

Process gnome-panel (pid: 2452, ti=f61c2000 task=ef4a1100 task.ti=f61c2000)

Stack:

OCOA: |

error site 1

version

00000006 ef76a630 c102efe8 d42a7a40 00000

Call Trace: process name}
[<c102efe8>] ? dup_mm+0x1d5/0x389
[<c102fb0c>] ? copy_process+0x91b/0xf2d
[<c1030258>] 7 do_fork+0x13a/0x2bc 4‘(
[<c10b1f41>] ? fd_install+Oxle/0x3c — call trace J
[<c10b9504>] ? do_pipe_flags+0x8a/0xc8
[<c113c603>] ? copy_to_user+0x29/0xf8
[<c1001dae>] ? sys_clone+0x21/0x27
[<c10030fb>] ? sysenter_do_call+0x12/0x28

Code: 02 31 db 89 d8 5b c3 56 89 c6 53 8b 58 3c 85 db.

EIP: [<cl10alcal>] anon_vma_link+0x24/0x2b SS: ESP 0068. f61c3eb8 oops id J
CR2: 0000000000000000

---[end trace 4dbb248fc567ac92]---

Oops Origins: # of reports per ver. .Sslab

s LTS vers. have lots of oops reports
= LTS: Long-Term Supported versions (eg. 2.6.32)
= Does not imply lots of bugs in LTS

107 — T T T 1T 1
10° |- a
o
5 | N — |
10 % — =
104 ?g 2 [[l o —
wn I — o o —]
= S = = Q
o — ot —_ _
8.10° |- S S T T :
—_ 8 —
2 | |
10 S
102 N
K
10° | |—| |
Sy S 2 % P PP o

Figure 4: Number of reports per Linux version (log scale) and release year

Oops Origin: # of reports per day

s For stable versions, # of reports per day is almost constant

sslab

system software

s For unstable versions, # of reports decreases after a new version

released

1,000 : :

800
600

400 -

reports / day

200 _— W LAY v LIS NS i ::;:: FAREY Y ‘ H HES T ’ - B

I T

e 2.6.32 —— 3.2

reports / day

=
o
o
o

Figure 9: Prevalence of reports from selected Linux versions over time (versions for which there

are at least 5000 reports)

Common Bugs or Events 3slab

= Aside from warning, “invalid pointer” is dominating

GPF INV_PTR ESMP_ID CNTXT SCHED
PT MAPUPT STATEMSOFT LOCK[IWARN

100 — e SN __
80 |- -
§
o 60 |- =
3)
-
B 40+ B s
X
20 7 i
7 = 7L
7 = 78/
0 _ - 77 7
P2 2 2 2 @ 2 2 @ @ @ P P P P P
e, e, e, ¢ ¢ o, ¢ ¢ ¢ © Y. v ¢ o A P
% A % B PR h D * x o
* * * * * * * * *

Figure 13: Prevalence of the 8 most common events (bugs or warnings)

Outline of the Talk 7 sslab

= Linux faults
= Why does Linux fail?

Example of Linux Bugs (1) 7 sslab

system software

n FIBHITGINT TEZ, FEFEEZEHLOTLS
s Bl “RILRAEZSR” DN
tun/tap: Fix crashes if open() /dev/net/tun and then poll() it.
Author: Mariusz Kozlowski <m.kozlowski@tuxland.pl>

IRAREE tun =S8
- tun [EXJLTIEZAELY

struct sock *sk = tun->s/k; struct sock *sk;
unsigned int mask = 0; unsigned int mask = 0;
if ('tun) if (Itun)
return POLLERR,; > return POLLERR;
4 sk = tun->sk;
tun 75‘“3<)L75\E575\€1’ﬁ’ﬁw

_ - tun MIXILMESIHIZRE
P NEFE J L TH 5 tun->sk bflELLJ

Linux [ZEIT5 “BGE7ZE” /N\T Zsslab

AR CRONG /T ERE
[Palix et al. 2011]

| NU” (R)bjﬁﬂlb\h)
Null # R DNELNLGOEMDREDFIVIE
= Inull (Inconsistent null check):
IRAVASBELERZICXIL-Fvy
— XEFFEDINT DB
= Block (Calling blocking func in non-blocking context)
JOvyILTWMEIWTENW I TER T Ov I T S5 MEFES
— - REVOvOZEFRELI=-FE, OvIEERTS
— B DFAIV R T LS

s BE12BEONTZERE

m EG)/{—

Linux CH“BEBL" /NI N{SAdHdD ~.sslab

~

v

THIFEIX 700 BD/NTHHS

s Linux 2.6.0 ~ 2.6.33 ZTHOFAE [Palix et al. 2011]

300 P EDN—ay
= Z 388 THAVREZE
= 4 —
* 8 200 [Z 700 1@
0= | I — I |
2004 2005 2006 2007 2008 2009 2010
=3 Elimination F_lu/ \775‘7%’3—('
o L DO ——p——[ntroduction \ JEGA A
S = 100 LSO TIFZEL
S50
0=== | | |] T |
2004 2005 2006 2007 2008 2009 2010
w 02 117H =YD ING
59 014 DEIFE-TS ©
=" '
: N
= = 00

2004

l2005

| | | | |
2006 2007 2008 2009 2010 J

Many bugs are in drivers

sslab
’ system software

of faults

400 —

300 —

200 —

—&— Staging
—O— Drivers
—&— Sound
—a&— Arch
—>— FS

Net
—+4—— Other

[Palix et al. 2011]

.

ML

a0 Y Y,

Viewed from the bugs rates... _Zsslab

[Staging for w
Limmature code

.% ------ Average
—8— Staging

wn

£

: —O— Drivers
Q —— Sound
_§ o . »\ —&— Arch
= a N gooon A

R —+—— Net

| | | | | | ==l N
2004 2005 2006 2007 2008 2009 2010 e HH M”Hmu

4 A %

[Palix et al. 2011] L g

Viewed from the bugs rates... A sslab
{Arch has improved
) Lbut remains a problem

------ Average
—&— Staging
—O— Drivers
—— Sound
—&— Arch
—»— FS

Net
—— Other

Y% of faulty notes

0.2

|

/ 3

140 P % 3
| | | “

160

‘2 Seagin 250
(K8
220
20 230
9

0.0 = | | ! | | | ik
2004 2005 2006 2007 2008 2009 2010 b IF

I

[Palix et al. 2011] a0, % %%, % % Y% %%
- S

Viewed from the bugs rates...

sslab
) system software

{Drivers are constantly improving

o

Y0 of faulty notes

0.2

0.0

|

L

From worst to average

|

Average
—&— Staging
—O— Drivers
—— Sound
—&— Arch
—— FS

2004

|
2005

I2006

|
2007

|
2008

| |
2009 2010

[Palix et al. 2011]

2

I
1 &12
I 160
| Drivers wia Seagy 250
| File i)
I3 1
L 2 130
b1

(R
R R AR A A

Otwr 140 1628
u ||

~

v

Viewed from Bug Types

tem software

Ly

Ye of faulty notes

------ Average
—e— BlockLock
—+— Null
—m— Var
IsNull
—o— NullRef
—a— Range
—0— Lock
—a— Intr
—¢— LocklIntr
—11+— Free
—A— Size

[Palix et al. 2011]

Viewed from Bug Types . sslab

Dereference of pointers
before checking

Je of faulty notes

0.0

Lfor NULL values

------ Average
—— Null
—— NullRef
—O0— Lock

I I I I
2004 2005 2006 2007 2008 2009 2010

[Palix et al. 2011]

Viewed from Bug Types . sslab

(Mutex was added |

1.5 —
s ‘.u
2 b W
= 1.0+ oo ia e Average
E' - = —4— Null
- x4 —— NullRef
:‘- 0 O-OO ®
e —0— Lock

ST .
XS O L ®
ST ’“‘0.0..0 °0. e O o.. .
........ oPine
) .
U
0.0 = I I I I I I
2004 2005 2006 2007 2008 2009 2010

[Palix et al. 2011]

Viewed from Bug Types . sslab

Btrfs was added
Unchecked pointers
0 Lreturned by functions

1.5 —

k2

g 104 T N e e Average
Z —— Null

= —— NullRef
e —0— Lock

b\Q

0.5 <

0.0 = I I I I l I
2004 2005 2006 2007 2008 2009 2010

[Palix et al. 2011]

Example of Linux Bug (2) Asslab

n ‘BB TIIEULNT D5
s GO —FERETIEZRDITA5ONHLLVED
B CE - o= AR ELST—X
ZAATEE DIEREALGIRAELVARL I —X
HERE

s EAHDRAAZIUTITIKREFEST H/NT
s TINARADOERY S LALE
1. TINAZADEAHEFERT D
— B AAZEZITHTENKDIIZT S
2. TINMABEBDI=HDT—2EEZFHMT S
« EHAEO—FTlE---
1. £2. DAMEDIEEN VD KYIR-TLEIZELHS

Example of Linux Bug (2) Ml

s OS LLULVNY : EAADRASIVTITIKTFT H/\T

void usb_remove_hed(struct usb_hed static irqreturn_t ohci_irq (struct usb_hcd *hcd, struct pt_regs *ptregs)

*th) {
{ Interrupt occur -
...... % Null A >4 5
remove debug files (ohci); if ((ohci->hcCa->done_head !=0)
: o\ && ! (he32 to cpup (ohci, &ohci->hcca->done _head)
ohci_mem _cleanup (ohci); & 0x01)) {
if (ohci->hcca) {
ohci->hcca = NULL;
ohci->hcca dma = 0; Interrupt occur drivers/usb/host/ohci-hcd.c
}
hcd->state = HC STATE HALT; Linux 2.6.18
if (hed->irq >= 0) id: 71795¢1df30b034414c921b4930ed88de34ca348
free_irq(hcd->irq, hed) THEINTWA

usb_deregister bus(&hcd->self);
hcd buffer destroy(hcd);

BRI ETTIER DAL

drivers/usb/core/hcd.c

Example of Linux Bugs (3) _Zsslab

= Many Linux device drivers assume device
perfection [Kadav et al. 2009]

s Example: Infinite polling
= Driver waiting for device to enter particular state
= If device not working correctly, the loop never ends. Hang

static int amd8l1le read_ phy(....)
{

reg val = readl(mmio + PHY_ACCESS);
while (reg val & PHY_CMD ACTIVE)
reg val = readl(mmio + PHY_ACCESS)

AMD 811le network driver(amd81llle.c)

Example of Linux Bugs (3) sslab

system software

s Solution: add the code for timeout
= |f timeout occurs, recover code is invoked

static int amd8l1l1lle read_ phy(....)
{

timeout = 9;
reg val = readl(mmio + PHY_ACCESS);
while (reg val & PHY_CMD ACTIVE) {
reg val = readl(mmio + PHY_ACCESS)
if (timeout++ >= 200)
__shadow_recover();

AMD 811le network driver(amd81llle.c)

Outline of the Talk 7 sslab

= Making Linux more reliable
= Code-checking Linux

Eliminating bugs _sslab

= Bugs in software have to be eliminated
= To avoid security issues and low availability

= Developers do a lot of debugging efforts
Code review, testing, maintenance etfc.

. Static code checkers help developers find
typical bugs

[=N x |

e ®| http://buildbot.livm.l... O ~ & @ fs/iffs2/nodelist.c . .
s Finding Null dereferences
594
595 o B T Ty W in LinUX kernel
| 6 <« Null pointer value stored to “ref' — . .
l with Clang static analyzer
597 dbe_noderef ("Last node at ¥p is (M08, Ep)¥n", ref, ref->{ _ -
593 ref->rext_in_ino);
599
800 while (ref->flash_offset = REF_EMPTY_NOOE)
v

7 <« Access to field *flash_offset’ results in a dereference of a null pointer (loaded from variable 'ref’)

Why "typical" bugs? A sslab

s Focusing on typical bugs is reasonable
= People make the same mistakes as others have done

s Examples of typical bugs:

= Pair APl misuses e.g., alloc/free, lock/unlock
[Saha et al. '13], [Palix et al. '11]

= Unhandled device failures e.g., infinite polling
[Kadav et al. '09]

Who writes what checkers? _~sslab

= Knowing typical bugs is difficult

= Bugs are human mistakes
Hard to predict typical developers' behaviors
= Many bugs are domain-specific

>50% of bugs in Linux file systems are violations of file
system semantics [Lu et al. FAST'13]

Hard to understand semantics in large-scale software

Learning from bug repositories .5slab

= Challenge: Recognizing many & similar patterns
= Hard to understand & summarize many documents

= Bugs are often documented in English
= E.g., >370,000 patches in Linux kernel
= Developers can extract typical bugs

o EN
e =2 https o T kemel,, .. ,O * B C i kemel/git/toevalds/linu, ..
- - - - A
A index : kernel/git/torvalds/linux.git I
g t Loux karmal sourcs trea |
ry refs | log tree commit diff stats ogreg || =l
Age Commit message (Expand) Author Files Lines
7hours Linux 3.17-rc5 [HEAD] [Vv317-1c5 1 Linus Torvalds 1 1+
fhours Merge branch Yoc-linus' of git/'ge kemel. orgpubdsemilinuxkemel/gitviravis Linus Torvalds 3 -23/+39
7 hours vis: avold non-forwarding large load after sonall store in path lockup Linus Torvalds 2 -+
12 bours Merge branch ‘pansc-3.17-1" of git:/'gt kemel orgput'scmilinuxemet'git'delisnpansc-linux Linus Torvalds g 804280
12 hours be careful with nd->inode i path_ini() and follkww_dotdot_rcu) Al Viro 1 21413
13 hours don't bugger nd->saq on sed_root_rcu() from folow_dotdot_rou() Al Vira 1 -1G+17 v
14 hours Merge tag ntb-3.17" of git:gehub.comfjonmascantb Linus Torvalds 2 oaald

Goals Zsslab

s Use machine learning to extract typical patch
documents in Linux kernel

= Many & similar patches are extracted

s Extract bug patterns from the extracted typical
patch documents

m Develop checkers for the extracted bug patterns
s Apply the checkers to the latest Linux kernel

Extracting many & similar patches .Sslab

= Natural language processing calculates the
similarity of patches

= Latent Dirichlet allocation (LDA) [Blei et al. '03]
s Clustering groups similar patches

= Recursively divides clusters by 2-means

= Enables us to extract large groups (5,000 - 10,000) of
similar patches

Clustering

e =22/ https kemel... O v @ G| =) kemelfgit/torvalds/linu,

A index : kernel/git/torvalds/linux.git
gt Lnux karnal sourc 16

wmary refs | log tree commit diff stats

Commit message (Expand)
Fhours Linux 3.17-¢5 [(V317-1c5] [master

Merge branch us' of git:g kemel orgipubisemilinuxiemealigitviravis
rding large logd after small store in path lockup

-3 171 of git:ligt kemel.org i
n

=0.2 0.0 0.2 0.4 0.6 0.8 1.0 12

0.8

0.6

0.2

0.0

=0.2 0.0 0.2 0.4 0.6 0.8 1.0 12

LDA in short 7 sslab

s LDA infers latent topics in documents

= A document is regarded as probability sets of topics

The similarity of two documents is the distance between the
probability sets for them

= Keywords characterizing patches can be obtained

In function devkmsg_read/writev/llseek/poll/open()..., the function raw_spin_lock/unlock is
used, there is potential deadlock case happening. CPU1: thread1 doing the cat /dev/kmsg:
raw_spin_lock(&logbuf lock); while (user->seq == log_next_seq) { when thread1 run here, at
this time one interrupt is coming on CPU1 and running based on this thread,if the interrupt
handle called the printk which need the log buf lock spin also, it will cause deadlock.

|
],)(Dl(). i) = H(}Izl f])(f}d|(fl)(H;}il Z:d” p(":dn |H(1)])(Wdn |':dn~ ,3))([(‘}([
. v, .j AT ,
LDA: p(0, z|w, e, B) =],)(“ [,) plw|a, B) = fp(9|(x)(1_[;?:1 >, P(znl0)p(wy| 2, B)dO

¢)(H. z, wla, B)’ W

topic A: 0.113, topic B: 0.055, topic C: 0.04 topic D: 0.038, topic E: 0.038, topic F:
Keywords:lock, unlock, spin, lock, protect,

Analyzing Linux patch documents _Zsslab

» 370,403 patch documents are analyzed
= Linux 2.6-rc2 ~ 3.12-rc5 (April 2005 — October 2013)
= Merge commits are excluded

= Analyzer has been implemented on Hadoop
MapReduce

= LDA from Apache Mahout

s Result: 66 clusters

= Linux had topics for general software bugs, OSs,
devices, CPU platforms, etc.

Result 1/3;: common bugs _sslab

m Clusters for bugs in general software
= Null dereferences, memory leaks, lock/unlock
= Typical software bugs in the Linux kernel
s Example document: memory leak
= Topic keywords: memory, leak, cpu,hotplug
= Misuse of kmalloc() and kfree()

commit 003615301, 2nd paragraph

USB: io_ti: fix port-data memory leak
Fix port-data memory leak by moving port data allocation
and deallocation to port_probe and port_remove.

Result 2/3: hardware 7 sslab

s Clusters for CPU platforms and devices
= ARM, X86, GPU, USB, NIC, etc.
= Major hardware-speicifc issues

s Example document: ARM
= Topic keywords: arm, mach, h, asm
= Problems deriving from ARM features

commit 9cff337, 3rd paragraph

So far as | am aware this problem is ARM specific, because
only ARM supports software change of the CPU (memory
system) byte sex, however the partition table parsing is in
generic MTD code.

Result 3/3: common OS features sslab

system software

s Clusters for common OS features
= Interrupt handling, buffer cache, DMA, etc
= Typical implementation issues in OSs

s Example document: interrupt handling
= Topic keywords: irqg, interrupt, msi
= Problems around masking interrupts

commit eabdedd, 2nd paragraph

The current OMAP GPIO IRQ framework doesn't use the

do edge IRQ, do level IRQ handlers, but instead calls
do_simple IRQ. This doesn't handle disabled interrupts properly,
so drivers will still get interrupts after calling disable irq.

Extracting bug patterns from a cluster _7.sslab

= [he cluster for interrupts are expected to typical
bugs in OSs

= The cluster remains too large (5,334 patches)
= [opic keywords help us extract interesting sub-
clusters

= A sub-cluster with keyword "free" is expected to have
bugs around free and interrupts

= [he sub-cluster with keyword "free" contains 364
patches

= 160 are identified as bugs

Result: the misuse of free_irq() is common~.ssiab

1. free_irq() with inconsistent device ID 41
2: missing free _irq() on initialization error 25
path
3: free irqg() with invalid irq 25
4: missing free irq() on module unloading 13
5. double free irq() 9
6: freeing other src before free irq() 14
/. freeing pages with interrupt disabled 14
8: missing free irq() before suspend 6
9: freeing shared irg with interrupt enabled 5

Other (most contain free and irq) 22
Total 160

Developing checkers . sslab

s A domain-specific checker for free_irq() misuse
= Checks the consistency of two arguments
Interrupt number and device ID
= Checks a typical life cycle of PCI device drivers
Probe, suspend, resume, remove, shutdown, etc.

= Runs on the Clang static analyzer

Checking Linux 3.15 .Sslab

= 2 bugs are found across 593 PCI drivers

1234
1235
1238

1250
1251
1252

1262
1263
1264

1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284}

release:

disabIe;:ci_release_regions(dev); interrupts may be delivered

S Ne must Finish initialization here ¥/
if (!socket->ch_irg || request_iraq({socket->ch_irg, yenta_interrupt, IRGF_SHARED, “venta”, socket)) {

(24 — Taking false branch — J

1, request_irq() succeeded

} else {
socket ->socket .features |= S5_CiP_CARDBUS;
1

¥ Ragister it with the pomcia faver.. #/
ret = pemcia_register_socket (&socket->socket);
if (ret == 0) {

5 e~ | 25 PCMCIA_register_socket() fails

@ «— Taking false branch — J

}

iounmap (socket ->hase); 3, Freeing SrC althOugh

pci_disable_device(dev);

kf ree(socket);

s 4, A device probe fails without free irq()

Related work Zsslab

= Automatic analysis of code patterns to determine
bug patterns

= Focusing on frequent code patterns [Engler et al. '01],
release omissions [Saha et al. '13]

= Depending on code analyses overlooks non-
deterministic bugs

s Framework for developing checkers easily

= [Renzelmann et al. '"12], [Lawall et al. '09]

= Checker developers need domain-specific knowledge of
which bugs are typical

Summary _Zsslab

s Static checkers are useful to detect typical bugs in
software

= Knowing typical bugs is difficult but reasonable

= Our method helps developers know typical bugs

= LDA and clustering help us extract typical bug patterns
from bug repositories

s Our findings:
= 66 clusters from >370,000 patches

= 9 bug patterns
= 2 bugs in the latest Linux

Take-Away Message & Conclusion ~_~.sslab

s Software dependability is crucially important
= Advanced IT companies achieve less than 5 NINES

= Is Linux dependable enough?

= Absolutely, NO
= Lots of failures, lots of bugs

s Code checkers can be extracted from the past
bug repositories
= Promising approach to learn from the past

